If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x+x^2=15
We move all terms to the left:
14x+x^2-(15)=0
a = 1; b = 14; c = -15;
Δ = b2-4ac
Δ = 142-4·1·(-15)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16}{2*1}=\frac{-30}{2} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16}{2*1}=\frac{2}{2} =1 $
| 9x+15=-5+11x | | 2r=3.26 | | E(5x-2)=21 | | 12k+4k+2k+2k=20 | | -424=-8(6x+5) | | 2=p-2+2 | | 150-x-2x=120+2 | | 12n+2n-11n-2n+4n=15 | | 10a-8a+5=13 | | 3/4k-11=4 | | 17-1.1x=26-0.7x | | 17-8k=-3(2k-4) | | -8k+6-10k=10 | | 8q-4q-3q=19 | | 7x+42=3x+12 | | 0.4x+4.7=0.8x-2.5 | | 2g-20=-6g+20 | | 20c-17c=18 | | -8+17m=18m | | 15r-14r+2r=18 | | 4(x-6)=56x14 | | -19-5n=17-10n+9 | | 19u-19u+-7u-13u-u=-17 | | 2/3x+14=90 | | 17y-14y+27=4y-18 | | 5-2u=-6u+1 | | 8d+8=3-5+9d | | 7(x+3)=2x-4 | | 5x+1+3=14 | | -11k+k=10 | | -0.63x+0.33x=9.3 | | -4(8m+1)=-260 |